

Helmut Stremmel^{1,2}, David Salvatierra¹, Andrea Cordero-de-Castro¹, Abdelmourhit Laissaoui³, Daniel C.V.R. Silva⁴, Evaldo L.G.

Espíndola⁵, Freylan Mena⁶, Mohamed Banni⁷, Mohammed Ariful Islam⁸, Cristiano V.M. Araúio¹ Institute of Marine Sciences of Andalusia (CSIC), Spain ²Ruhr Universität Bochum, Germany; Helmut.Stremmel@rub.de 3 National Centre for Nuclear Energy, Science and Technology, Morocco 4 Federal University of Southern and Southeastern Pará, Brazil;

⁵University of São Paulo, São Carlos, Brazil ⁶Universidad Nacional, Costa Rica ⁷Higher Institute of Agronomy, Tunisia ⁸Sylhet Agricultural University, Bangladesh

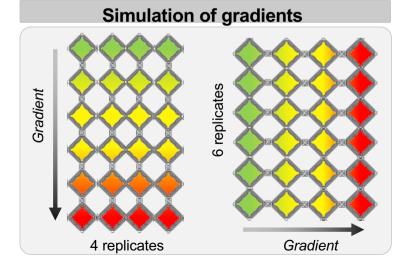
Introduction

CNESTEN

Behavioral assessments in ecotoxicological studies have been focused on the changes in swimming and movement patterns of exposed organisms. Nonetheless, spatial avoidance has been studied from a perspective of displacement along gradients patches of contamination multicompartmented environment.

HeMHAS (Heterogeneous Multi-Habitat Assay System) is a system formed multiple compartments, which connected and creating different scenarios of contamination.

HeMHAS – Heterogeneous Multi-Habitat Assay System



Automated doors

Touch Screen

Final Remarks

HeMHAS helps clarifying how contaminants might:

- (i) affect the spatial distribution of populations in a chemically heterogeneous landscape;
- (ii) increase the loss of local biodiversity and disrupt the functioning of the ecosystems due to evasion of organisms;
- (iii) change the ecological niche of avoiders/invaders due to the contamination-driven habitat selection.

Brestress Envisonmental siness In Aduatic écosystems MultiCecotox

Introduction

Behavioral assessments in ecotoxicological studies have been focused on the changes in the swimming and movement patterns of exposed organisms. Nonetheless, spatial avoidance has been studied from a perspective of displacement along gradients or patches of contamination in a multi-compartmented environment.

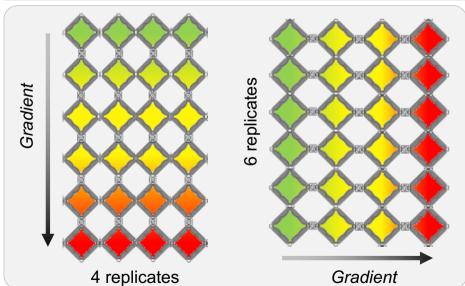
HeMHAS (Heterogeneous Multi-Habitat Assay System) is a system formed by multiple compartments, which are connected and allow creating different scenarios of contamination.

Electronic version

HeMHAS – Heterogeneous Multi-Habitat Assay System

4 x 6 compartments

Automated doors



Touch Screen

Electronic version

Simulation of gradients

Brestess Envisonmental siness In Aduatic écosystems MultiCecotox

Final Remarks

HeMHAS helps clarifying how contaminants might:

- (i) affect the spatial distribution of populations in a chemically heterogeneous landscape;
- (ii) increase the loss of local biodiversity and disrupt the functioning of the ecosystems due to evasion of organisms;
- (iii) change the ecological niche of avoiders/invaders due to the contamination-driven habitat selection.

Electronic version

Acknowledgments

